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half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost vari-
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we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sec-
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formalism. We also give a proof of validity of this construction. A similar construction in

the closed string sector enables us to define a physical Hilbert space in pure spinor formal-

ism which is used to project the covariant boundary states of both the BPS and non-BPS

instantonic D-branes. These projected boundary states take exactly the same form as those

found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder

diagram with manifest open-closed duality.
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1. Introduction and summary

It has been a long standing problem of fundamental interest to quantise superstring the-

ory with all the space-time symmetries manifest until Berkovits’ proposal of pure spinor

formalism [1] was put forward. The formalism comes with a bag of tools which includes

a conformally gauge fixed action with total central charge zero, a BRST operator, phys-

ical state condition and rules for computing scattering amplitudes. It is remarkable that

everything fits together to give consistent results like spectrum of physical states and super-

Poincaré covariant results for the scattering amplitudes in flat space [2 – 4].1 Although the

space-time symmetry is very much emphasised, it is not very clear what role the world-

sheet conformal symmetry has to play in this case, something which is very transparent

in the Neveu-Schwarz-Ramond (NSR) formalism. A particular example is to understand

1See also [5].

– 1 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
5

D-branes2 from both the open and closed string point of view. In NSR formalism these two

views are bridged by the underlying world-sheet picture where the modular transformation

relates them. This picture is not, in general, apparent if one is armed only with a BRST

setup like in pure spinor formalism. Let us consider the simplest diagram, namely the

cylinder, which computes the force between two D-branes. Following will be the generic

procedure to compute this in a BRST setup: start out with the quadratic space-time action

involving the BRST operator with a linearised gauge invariance. Obtain the propagator by

inverting the kinetic term with a valid gauge choice. Then compute the relevant Feynman

diagram where two external sources are connected by a single line (see, for example, [8]).

If we know the correct strength for all the sources then this computation is completely

well-defined, the only problem being there are infinite number of fields to be taken into

account. In this computation we do not use any CFT techniques as there is no world-sheet

interpretation and therefore the open-closed duality is not manifest. In NSR formalism this

interpretation results from a simple gauge choice [9] which we call Siegel gauge.3 It is in

this gauge the closed string propagator in Schwinger parametrisation has the interpretation

of world-sheet time evolution. It is not clear what would be the corresponding gauge choice

in pure spinor formalism.

In more technical terms the problem can be described in the following way. The

cylinder diagram is computed in the closed string channel by first constructing the boundary

state in Siegel gauge and then computing an inner product where the world-sheet time

evolution operator is sandwiched between two boundary states. The result can then be

interpreted in the open string channel by performing a modular transformation. There are

two basic ingredients in this computation:

1. A suitable boundary state that provides the correct source terms for all the relevant

closed string states.

2. The correct choice of degrees of freedom that should be allowed to propagate along

the cylinder (which is implemented by the Siegel gauge).

In pure spinor formalism the first problem can be solved without much trouble. Although

there is a pure spinor constraint on the bosonic ghost sector which makes the construction

of boundary states troublesome [10], it has been suggested in [11] that constructing the

boundary states in the relaxed CFT where there is no constraint also does the job. Writing

down the boundary conditions and boundary states in the free CFT simply bypasses the

technical difficulty of incorporating the pure spinor constraint yet producing the correct

results for the source terms once the rules for such computations are set up properly [11].

The main point of doing this is the fact that it is not beneficial to go through the technical

difficulty of imposing the pure spinor constraint as this, by itself, does not solve the second

problem. To solve the second problem one also needs to throw away the gauge degrees of

freedom. This claim has been explicitly demonstrated in [11] through a computation of

the long range force between two D-branes. If it requires us to gauge fix the space-time

2D-branes have been studied from various points of view in pure spinor formalism in [6, 10].
3Its bsonic counterpart is called Siegel gauge in string field theory analysis.
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theory at every mass level separately then that would be an uncontrollable job to do. A

full string theoretic treatment of allowing only the correct degrees of freedom to propagate

seems to be a subtle issue.

Certainly the above subtlety is encountered when one tries to do the computation

with full covariance under SO(9, 1). Here we shall show that the cylinder diagram can

indeed be computed in pure spinor formalism more easily by preserving covariance only

under the transverse SO(8) part. The approach will be as follows: since the computation

is well understood in the light-cone Green-Schwarz (LCGS) formalism, it will suffice us to

construct the LCGS boundary states [12 – 15] explicitly in pure spinor formalism. In other

words if the LCGS Hilbert space can be constructed explicitly in pure spinor formalism,

then any covariant pure spinor boundary state could be projected onto that Hilbert space.

The projected boundary states could then be evolved by the world-sheet time evolution. By

exploiting the manifest space-time supersymmetry of pure spinor formalism we construct

the LCGS Hilbert space, which will be denoted HDDF, by going through the analogue of

well-known DDF (Del Giudice, Di Vecchia, Fubini) construction [16].

For open strings on a BPS D-brane this construction is done by first using ghost number

one, dimension zero unintegrated massless vertex operators to construct certain massless

physical states in the vector and conjugate spinor representations of SO(8) with special

kinematical condition that the light-cone component q+ of the momentum is non-zero

and fixed. Then we use the ghost number zero, dimension one integrated massless vertex

operators to construct the DDF operators which are the analogues of the LCGS oscillators.

These operators commute/anticommute with the BRST operator so that while acting on

physical states they produce other physical states. The DDF operators constructed this

way have nontrivial expansions in terms of the fermionic matter variable θ. Therefore,

although the leading contribution to the DDF commutation relations do match with that

of the LCGS oscillators [18], there are terms higher order in θ. We define the physical

Hilbert space HDDF to be spanned by all the states which are obtained by applying creation

modes on the massless physical states constructed in the first step. The ghost number two

conjugate states are similarly constructed by applying DDF operators on certain massless

states that form the BRST cohomology at ghost number 2. These states are chosen so that

they are conjugate to the ghost number one massless DDF states. We prove that the DDF

states constructed this way form an orthonormal basis in HDDF. The orthogonality of the

DDF states establishes the fact that all the higher order θ-terms drop off when the DDF

commutators are restricted in HDDF, so that the commutation relations exactly match with

those of LCGS oscillators. This implies that though the DDF operators constructed here

have complicated θ-expansions they behave as simply as LCGS oscillators in HDDF.

For a non-BPS D-brane, we have argued, using the boundary conditions suggested

in [11], that there are two sectors of open strings - R and NS sectors. All the world-

sheet fields that are space-time fermions (i.e. fermionic matter and bosonic ghost) satisfy

periodic and anti-periodic boundary conditions on the doubled surface in R and NS sectors

respectively. DDF construction for the R sector goes through as described in the previous

paragraph. For the NS sector the bosonic DDF operators are constructed in the same

way. But the fermionic ones are constructed in a slightly different way so that they have
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half-integer modes instead of integer modes. This sector has a unique ground state which

is included in the BRST cohomology. We identify this with the open string tachyon. This

way the DDF states in the NS sector gives an explicit construction of the corresponding

open string spectrum found in LCGS formalism [19, 15].

Doing the similar construction on the closed string sector we define the physical Hilbert

space HDDF on the closed string side. Given the covariant boundary states constructed in

the free CFT, as in [11], projection of the corresponding actual pure spinor boundary states

onto HDDF can be constructed unambiguously. Due to the special kinematical condition

of the DDF states that all of them have a fixed nonzero q+, only instantonic D-brane

boundary states can be projected this way to get the physical components. To practically

derive a projected boundary state we proceed as follows. Since a projected boundary

state is supposed to be expanded in terms of the DDF states, it should be possible to

get this as a solution to the gluing conditions satisfied by the DDF operators. Starting

from the boundary conditions written in the open string channel we derive the DDF gluing

conditions and show that they are given by the same equations satisfied by the LCGS

oscillators as discussed in [12, 14, 15]. Therefore the projected boundary states in pure

spinor formalism are obtained from the corresponding boundary states in LCGS formalism

simply by interpreting the LCGS oscillators as the DDF operators constructed here. These

boundary states can then be evolved by the world-sheet time evolution in pure spinor

formalism to give the correct result for the cylinder. In all our discussion we shall consider

type IIB string theory for definiteness and work in the α′ = 2 unit. Generalisation to type

IIA is straightforward.

The rest of the paper is organised as follows: section 2 reviews the non-BPS boundary

conditions as suggested in [11] and analyses the open string spectrum. Section 3 discusses

the DDF construction for open strings on both BPS and non-BPS D-branes of type II string

theories. This also includes a proof of validity of the construction. Section 4 defines the

projected boundary states and derives the DDF gluing conditions. The line of argument

to compute the cylinder diagram has been given in section 5. We conclude with a few

unresolved questions in section 6. Several appendices contain necessary technical details.

2. Boundary conditions and spectrum of open strings on non-BPS

D-branes

2.1 Review of boundary conditions

SO(8) covariant open string boundary conditions for non-BPS D-branes in LCGS formalism

were obtained in [15]. Generalising this work to any manifestly supersymmetric formalism,

similar boundary conditions were suggested in pure spinor formalism in [11]. Specialising to

type IIB string theory, these boundary conditions take the following form for the combined

fermionic matter and bosonic ghost sector in the unconstrained CFT,

Uα(z)UβT (w) = Mαβ
γδ Ũγ(z̄)Ũ δT (w̄) ,

Uα(z)V T
β (w) = Mα δ

βγ Ũγ(z̄)Ṽ T
δ (w̄) ,

Vα(z)V T
β (w) = Mγδ

αβṼγ(z̄)Ṽ T
δ (w̄) ,















at z = z̄, w = w̄ , (2.1)
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where we have introduced the column vectors,

Uα(z) =

(

λα(z)

θα(z)

)

, Vα(z) =

(

wα(z)

pα(z)

)

, (2.2)

and similarly for the right moving sector. The coupling matrices are given by,

Mαβ
γδ = −

[

1

16
γαβ

µ (MV )µν γ̄ν
γδ +

1

16 × 3!
γαβ

µ1···µ3
(MV )µ1

ν1
· · · (MV )µ3

ν3
γ̄ν1···ν3

γδ

+
1

16 × 5!

∑

µ1,...,µ5∈K(5)

γαβ
µ1···µ5

(MV )µ1
ν1
· · · (MV )µ5

ν5
γ̄ν1···ν5

γδ

]

,

Mα δ
βγ =

1

16
δα

βδ δ
γ +

1

16 × 2!
γ α

µ1µ2 β(MV )µ1
ν1

(MV )µ2
ν2

γ̄ν1ν2 δ
γ

+
1

16 × 4!
γ α

µ1···µ4 β(MV )µ1
ν1
· · · (MV )µ4

ν4
γ̄ν1···ν4 δ

γ . (2.3)

Our gamma matrix conventions can be found in appendix A. The summation convention

for the repeated indices has been followed for all the terms in the above two equations except

for the last term of the first equation. The sum over the five vector indices µ1 · · · µ5 has

been restricted to a set K(5) which is defined as follows. We divide the set of all possible

sets of five indices {{µ1, . . . , µ5}|µi = 0, . . . , 9} into two subsets of equal order, namely

K(5) and K(5)
D such that for every element {µ1, . . . , µ5} ∈ K(5) there exists a dual element

{µ1, . . . , µ5}D = {ν1, . . . , ν5} ∈ K(5)
D such that, εµ1···µ5ν1···ν5 6= 0. The supersymmetry

currents, being odd in the world-sheet fields belonging to the combined fermionic matter

and bosonic ghosts, do not satisfy a linear boundary condition. But the above boundary

conditions do lead to BRST invariance.

Following the method of [15] we can now introduce the holomorphic fields Uα(z) and

Vβ(z) on the doubled surface through the following expressions,

Uα(u) · · · UβT (v) =

{

Uα(z) · · · UβT (w)|z=u,w=v , =u,=v ≥ 0 ,

Mαβ
γδ Ũγ(z̄) · · · ŨδT (w̄)|z̄=u,w̄=v , =u,=v ≤ 0 ,

(2.4)

Uα(u) · · · VT
β (v) =

{

Uα(z) · · · VT
β (w)|z=u,w=v , =u,=v ≥ 0 ,

Mα δ
βγ Ũγ(z̄) · · · ṼT

δ (w̄)|z̄=u,w̄=v , =u,=v ≤ 0 ,
(2.5)

Vα(u) · · · VT
β (v) =

{

Vα(z) · · · VT
β (w)|z=u,w=v , =u,=v ≥ 0 ,

Mγδ
αβṼγ(z̄) · · · ṼT

δ (w̄)|z̄=u,w̄=v , =u,=v ≤ 0 .
(2.6)

The dots imply that the relations are considered to be true even when other operators

appear in between in a correlation function. As argued in [15], an immediate consequence

of the above definitions is,

Uα(τ, 2π) = ±Uα(τ, 0) , Vα(τ, 2π) = ±Vα(τ, 0) , (2.7)

so that there are two sectors of open strings, namely the R (periodic) and the NS (anti-

periodic) sectors. Below we shall discuss the spectrum of these open strings.
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2.2 Open string spectrum

The periodic sector can be analysed in the usual way [1] and therefore will give rise to an

open string spectrum which is same as that on a BPS D-brane of same dimensionality in

type IIA theory. Therefore the anti-periodic sector will be our main topic of discussion

here. In this sector all the relevant fields have half-integer modes: Uα
r and Vα,r, with

r ∈ Z + 1/2. Therefore, in absence of any zero modes, there is a unique ground state |σ〉
in the combined fermionic matter and bosonic ghost sector, defined in the following way,

Uα
r |σ〉 = 0 , Vα,r|σ〉 = 0 , ∀r ≥ 1/2 . (2.8)

We may define the ghost number for this state to be one. Excited states in the theory are

obtained by applying the negative modes of the oscillators on |σ〉 and by imposing pure

spinor constraint. Physical states are the ghost number one states in BRST cohomology,

where the BRST operator (see eq. (A.9)) takes the following form in terms of various modes

in α′ = 2 unit,

QB =
∑

r

(λ−rpr)+
i

2

∑

r,s

(λ−rγ̄µθ−s)αµ
r+s−

1

8

∑

r,s,t

(r+s+t) (λrγ̄
µθs) (θtγ̄µθ−r−s−t) , (2.9)

where αµ
n =

∮

dz
2πzn∂Xµ(z). Mass of the state is determined by the fact that the state is

annihilated by the Virasoro zero mode L0 given in eq. (A.12). It is easy to check that the

ground state |σ, k〉, with momentum k, is an allowed state in the BRST cohomology.

QB|σ, k〉 = 0 , (for any k) , L0|σ, k〉 = 0 ,⇒ M2 = −1

4
. (2.10)

This is the open string tachyon. There is a space-time fermion at the massless level. The

chirality is same as that of the massless fermion in the R-sector.4

|ξ(k), k〉 ≡ ξα(k)pα,−1/2|σ, k〉 ,

QB|ξ(k), k〉 = 0 ⇒ kµ (γ̄µξ(k))α = 0 ,

L0|ξ(k), k〉 = 0 ⇒ k2 = 0 . (2.11)

One can further proceed in the similar way. But to count all the states in the BRST

cohomology one may proceed to follow the argument of Berkovits given in [2]. We shall

not repeat the details here. But one can argue that the analysis goes through for the

NS sector simply by considering all the SO(8) vectors to be periodic and all the SO(8)

spinors to be anti-periodic on the world-sheet. This includes all the fields appearing in

the analysis of [2] including the infinite number of ghosts for ghosts. For example the

vector field in eqs.(4.3) of [2] will have the same mode expansion, but the spinor field, in

the present case, will be expanded in terms of half-integer modes. Having constructed all

4The correct way to determine the chirality is to first realise that these massless fermions are the

goldstinos corresponding to the spontaneously broken space-time supersymmetries [19]. This tells us that

they should have opposite chirality in type IIA theory which, in turn, determines the chirality of fermionic

matter and bosonic ghost fields that need to be used for the NS sector.

– 6 –
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the transverse creation modes, all the elements in the BRST cohomology can be obtained

simply by applying those operators freely with a factor of5 e−ik−X+
, with k− = N

k+ on the

unique ground state |σ, k〉 with k+ 6= 0 (fixed), k− = 0 and ~k2 = 1. Here N is the total

level of all the creation operators. Notice that |σ, k〉 is the NS-sector analogue of the state

in eq. (4.8) of [2] and it does not have the c-ghost dependent additive part. This is because

|σ, k〉 is annihilated by QB even without the pure spinor constraint as can be checked by

using eqs. (2.8) and (2.9).

Although the arguments given in [2] applied to the NS sector establish the fact that

the pure spinor BRST cohomology is isomorphic to the LCGS Hilbert space [15], we do

not have an explicit construction of this Hilbert space in terms of the pure spinor degrees

of freedom. In the next section we shall achieve this by performing the analogue of DDF

construction in pure spinor formalism without introducing the infinite number of ghosts

for ghosts.

3. The DDF construction

Here we shall first construct the DDF states for the periodic sector. The same for the

anti-periodic sector, which will be discussed next, can be constructed more easily.

3.1 Periodic sector

The construction is done using the massless vertex operators both in unintegrated and

integrated forms as discussed in appendix B.6 Unlike in the NSR formalism [18], we exploit

the manifest supersymmetry in the present case to build the whole construction. All the

DDF states will be ghost number one physical states with manifest SO(8) covariance and

will be in one-to-one correspondence with the states in LCGS formalism. The construction

goes through the following two steps:

1. Construct the SO(8) covariant massless DDF states by using the BRST and super-

symmetry properties of the gluon and gluino vertex operators in the unintegrated

form. These operators have dimension zero and ghost number one. The conjugate

states, with respect to which the massless DDF states form an orthonormal basis,

are constructed using the unintegrated vertex operators of ghost number two states

in the BRST cohomology.

2. Construct the BRST invariant DDF operators that are in one-to-one correspondence

with the bosonic and fermionic oscillators in LCGS formalism by using the dimension

one, ghost number zero gluon and gluino vertex operators in the integrated form. One

obtains the physical Hilbert space HDDF by applying the creation DDF modes on

the massless states constructed in the first step. Similarly the conjugate states are

obtained by applying the DDF operators on the massless conjugate states.

5In our notation the mass-shell condition for the anti-periodic sector reads: M
2 = −

k2

4
= 1

4
(2k

+
k
−
−

~k
2) = 1

2
(N −

1
2
).

6See [17] for a detailed discussion on closed string vertex operators.
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In order for the above construction to go through one needs to show that the DDF operators

do have the same algebra of the corresponding LCGS oscillators. We shall argue that this

condition is indeed satisfied within HDDF by proving that the DDF states constructed

above form an orthogonal basis in HDDF.

Let us now proceed to perform the first step. We shall consider the massless uninte-

grated vertex operator in (B.1) with the gauge choice,

a+(k) = 0 , (3.1)

and the choice of momentum: k+(6= 0) and kI left arbitrary and k− =
~k2

2k+ . According to

the on-shell conditions in (B.3), this implies,

a−(k) =
1

k+
kIaI(k) , ξL(k) = − 1√

2k+
kIσIξR(k) . (3.2)

To simplify notations we have depicted the above quantities as functions of k, whereas they

are actually functions of only k+ and ~k. We shall follow the same notation below as well.

Using the above conditions in eq. (B.1) one gets,

u(k, z) = aI(k)vI(k, z) + ξȧ
R(k)sȧ

R(k, z) ,

vI(k, z) = bI(k, z) − kI

k+
b+(k, z) ,

sȧ(k, z) = f ȧ
R(k, z) − kI

√
2k+

σI
aȧf

a
L(k, z) , (3.3)

where aI(k) and ξȧ
R(k) are the independent components. Therefore the states,

|I, k〉 ≡ vI(k, 0)|0〉 , |ȧ, k〉 ≡
√

k+

i
√

2
sȧ(k, 0)|0〉 , (3.4)

are the physical ground states in 8v and 8c of SO(8). The particular normalisation chosen

will be explained later. Let us now discuss the supersymmetry transformations of these

states. Using eqs. (B.5) one finds that in terms of the SO(8) notations these are given by

(up to BRST exact terms),

Qa
L|I, k〉 =

√

k+

i
√

2
σI

aȧ|ȧ, k〉 ,

Qa
L|ȧ, k〉 =

√

k+

i
√

2
σI

aȧ|I, k〉 ,

Qȧ
R|I, k〉 =

1
√

i2
√

2k+
kJ(δJIδȧḃ + σ̄JI

ȧḃ
)|ḃ, k〉 ,

Qȧ
R|ḃ, k〉 =

1
√

i2
√

2k+
kI(δIJδȧḃ + σ̄IJ

ȧḃ
)|J, k〉 . (3.5)

To show the last equality one uses the fact that kµbµ(k, z) is BRST exact which is responsi-

ble for the gauge invariance in (B.3). The above equations are precisely the supersymmetry

– 8 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
5

transformations of the massless states in LCGS formalism [18]. One can also define a set

of conjugate states 〈I, k| and 〈ȧ, k| with the following inner products:

〈I, k|J, l〉 = δIJδ(k+ + l+)δ8(~k +~l) , 〈ȧ, k+|ḃ, l+〉 = δȧḃδ(k+ + l+)δ8(~k +~l) . (3.6)

These states can be explicitly constructed in terms of ghost number two zero-mode opera-

tors once the θ-expansions of the states |I, k〉 and |ȧ, k〉 are known. These states are also

annihilated by QB and form the BRST cohomology at ghost number two.

We shall now proceed to the second step where the DDF operators will be constructed

using the vertex operators Bµ(k, z) and Fα(k, z) (see appendix B). Let us first consider

the gluon vertex operator BI(k−, z) along the light-cone transverse direction µ = I with

momentum: k− 6= 0, k+ = kI = 0. Using eqs. (B.7) one shows that only the left moving

gluino is generated under the space-time supersymmetry transformations of this operator.

[

Qa
L,BI(k−, z)

]

= 0,
[

Qȧ
R,BI(k−, z)

]

= − i√
2
k−σI

aȧFa
L(k−, z) , (3.7)

The supersymmetry transformations of FL(k−, z) are given by (up to total derivative

terms),

{

Qa
L,Fb

L(k−, z)
}

=
√

2δabB+(k−, z) ,
{

Qȧ
R,Fa

L(k−, z)
}

= σI
aȧBI(k−, z) . (3.8)

Notice that B+(0, z) = ∂X+(z) (eq. (B.9)) and for non-zero k−, B+(k−, z) should be a

total derivative as kµBµ(k, z) is so, which is responsible for the gauge invariance in (B.3).

Therefore only the first term in the first equation in (B.8) will survive at the lowest θ-

level. Moreover, the higher order θ-terms can not contribute as the operator has to be a

dimension one total derivative. Therefore we should have:

B+(k−, z) =
i

k−
∂e−ik−X+

(z) , k− 6= 0 . (3.9)

Next we define the DDF operators,

AI
n(k0) ≡

∮

dz

2π
BI(k− = −nk0, z) ,

Sa
n(k0) ≡ 1

√

−i
√

2α+
0

∮

dz

2πi
Fa

L(k− = −nk0, z) , (3.10)

where k0 is a real number and α+
0 follows from the definition given below eq. (2.9). All

the DDF states are going to have a fixed value of α+
0 which is same as that of the states

in (3.4). This is simply because none of the above DDF operators excites momentum along

this direction. Also we shall argue in appendix C that ∂X− does not appear in any of the

DDF operators (see statement (C.8)), so that α+
0 appears to be only a c-number in the

string of DDF operators in a given DDF state. Being constructed out of dimension one

primaries, the DDF operators commute with all the Virasoro generators. In particular,

commuting with L0 implies that the action of the n-th mode changes the level of a state
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by −n. Using eqs. (B.6) one can argue that while acting on any state of momentum q, the

operators AI
n(1/q+) and Sa

n(1/q+) are BRST invariant.

[

QB, AI
n(1/q+)

]

= 0 ,
{

QB , Sa
n(1/q+)

}

= 0 . (3.11)

The supersymmetry transformations of the DDF operators take the following form on any

such state,

[

Qa
L, AI

n(1/q+)
]

= 0 ,
[

Qȧ
R, AI

n(1/q+)
]

= − n
√

i
√

2q+
Sa

n(1/q+) ,

{

Qa
L, Sb

n(1/q+)
}

=
√

−i
√

2q+δabδn,0 ,
{

Qȧ
R, Sa

n(1/q+)
}

=
1

√

i
√

2q+
σI

aȧA
I
n(1/q+) .

(3.12)

Although the above transformations are precisely the ones expected for the LCGS oscilla-

tors, the commutation relations among the DDF operators do not quite form the desired

algebra because of the terms higher order in θ. Using various OPE’s in appendix A one

can show:

Resz→wBI(k−, z)BJ(p−, w) = ik−δIJ∂X+(w)e−i(k−+p−)X+
(w) + O(θ2) ,

Resz→wFa
L(k−, z)Fb

L(p−, w) =
√

2δab∂X+(w)e−i(k−+p−)X+
(w) + O(θ2) ,

Resz→wBI(k−, z)Fa
L(p−, w) = 0 + O(θ) , (3.13)

which imply the following commutation relations,

[

AI
m(1/q+), AJ

n(1/q+)
]

= mδIJδm,−n + O(θ2) ,
{

Sa
m(1/q+), Sb

n(1/q+)
}

= δabδm,−n + O(θ2) ,
[

AI
m(1/q+), Sa

n(1/q+)
]

= 0 + O(θ) . (3.14)

We shall argue later that these higher order terms will drop off in the physical Hilbert

space that we are going to define. We first define the following excited states,

|{(Ii, ni)}, {(aj ,mj)}, I, q〉
|{(Ii, ni)}, {(aj ,mj)}, ȧ, q〉

}

∝
∏

i

AIi
−ni

(1/q+
0 )

∏

j

S
aj

−mj
(1/q+

0 )

{

|I, q0〉 ,

|ȧ, q0〉 ,
(3.15)

where all the integers {ni} and {mj} are positive definite and the net momentum q is given

by: q+ = q+
0 , q− = N

q+
0

+ q−0 , qI = qI
0 , with q2

0 = 0. N is the total level: N =
∑

i ni +
∑

j mj.

The open string mass is given by: M2 = − q2

4 = N
2 . Therefore all the above DDF states

are annihilated by both QB and L0, hence are physical. They are also in one-to-one

correspondence with the states in LCGS formalism. In defining the states in eqs. (3.15)

one follows a particular canonical ordering of all the operators. Although according to the

commutation relations (3.14) the states with different ordering are in general completely

different states, we shall later see that effectively they will differ at most by an overall sign

due to the reordering of the fermionic operators. We define a Hilbert space HDDF by the

space spanned by the basis states (3.15). Next we define the conjugate basis states,

〈{(Ii, ni)}, {(aj ,mj)}, I, q|
〈{(Ii, ni)}, {(aj ,mj)}, ȧ, q|

}

∝
〈I, q0|
〈ȧ, q0|

}

∏

j

S
aj
mj (1/q

+
0 )

∏

i

AIi
ni

(1/q+
0 ) . (3.16)
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Similar remarks about the ordering of the operators are in order in this case as well. If

we can now argue that the basis defined this way is orthogonal such that by choosing the

normalisation suitably the nonzero inner products can be written as,

〈{(Ii, ni)}, {(aj ,mj)}, I, q|{(I ′i , n′
i)}, {(a′j ,m′

j)}, I ′, q′〉 = δ{Ii,ni},{I′i,n
′

i}
δ{aj ,mj},{a′

j ,m′

j}

δI,I′δ(q
+ + q′+)δ(~q + ~q′) ,

〈{(Ii, ni)}, {(aj ,mj)}, ȧ, q|{(I ′i , n′
i)}, {(a′j ,m′

j)}, ȧ′, q′〉 = δ{Ii,ni},{I′i,n
′

i}
δ{aj ,mj},{a′

j ,m′

j}

δȧ,ȧ′δ(q+ + q′+)δ(~q + ~q′) , (3.17)

then it would imply that the DDF operators have the desired algebra in HDDF.

[

AI
m(1/q+

0 ), AJ
n(1/q+

0 )
]

HDDF
= δIJδm,−n ,

{

Sa
m(1/q+

0 ), Sb
n(1/q+

0 )
}

HDDF

= δabδm,−n ,

[

AI
m(1/q+

0 ), Sa
n(1/q+

0 )
]

HDDF
= 0 . (3.18)

Certainly the validity of our construction crucially relies on the orthogonality of the DDF

states defined in this section. We shall prove it section 3.3.

Before going into the DDF construction for the anti-periodic sector let us explain the

normalisation chosen in eqs. (3.4). Using the second equation in each of (3.10) and (B.9)

one shows,

Sa
0 =

1
√

−i
√

2α+
0

Qa
L ,

{

Sa
0 , Sb

0

}

= δab , (3.19)

which are exact in θ expansions and as desired for the fermionic zero modes in LCGS

formalism [18]. Then using the first two equations in (3.5) one shows,

Sa
0

( |I, q〉
|ȧ, q〉

)

=
1√
2
σI

aȧ

( |ȧ, q〉
|I, q〉

)

, (3.20)

which is also expected.

3.2 Anti-periodic sector

Let us now turn to the construction of DDF states in the anti-periodic sector. Super-

symmetry, which has played a crucial role in such construction in the periodic sector, is

broken in this case. Nevertheless we shall now see that the non-supersymmetric open string

spectrum can be obtained by a simple generalisation of the previous construction. In the

anti-periodic sector any space-time fermion has half-integer modes whereas all the space-

time bosons have the same integer mods as in the previous case. This means that the

construction of the bosonic oscillators AI
n(1/q+) still goes through with the commutation

relation as given in (3.18). We define the half-integer fermionic modes in the following way,

Sa
r (1/q+) =

1
√

−i
√

2α+
0

∮

dz

2πi
Fa

L(k− = −r/q+, z) , (3.21)
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where r ∈ Z + 1/2. In the present sector the vacuum |σ〉 is twisted so that it produces

branch cut for the space-time fermions. The action of Sa
r (1/q+) is well defined on any

excited sate of momentum q on this vacuum, because the branch cut in the space-time

fermions is cancelled by the branch cut produced by the half-integer units of momentum

in the DDF vertex Fa
L(k− = −r/q+, z). Using the second equation in (B.6) and the anti-

periodicity of the fermions one can argue that these operators are BRST exact on any state

of momentum q,

{

QB, Sa
r (1/q+)

}

= 0 . (3.22)

The physical Hilbert space HDDF is now defined to be expanded by the following ghost

number one states,

|{(Ii, ni)}, {(aj , rj)}, q〉 ∝
∏

i

AIi
−ni

(1/q+
0 )

∏

j

S
aj

−rj
(1/q+

0 )|σ, q0〉 , (3.23)

with fixed q+
0 such that q2

0 = 1. The net momentum q is now given by, q+ = q+
0 , q− =

N
q+
0

+ q−0 , qI = qI
0 , where the net level is: N =

∑

i ni +
∑

j rj. The open string mass is now

given by: M2 = 1
2

(

N − 1
2

)

. Proceeding similarly as in the periodic case by defining the

conjugate states one argues the following commutation relations in the physical Hilbert

space,

{

Sa
r (1/q+), Sb

s(1/q
+)

}

HDDF

= δabδr,−s ,
[

AI
n(1/q+), Sa

r (1/q+)
]

HDDF
= 0 . (3.24)

Again one needs the DDF basis to be orthogonal, an issue that will be discussed in the

next section.

3.3 Validity of the construction

Validity of the DDF construction as done above relies on the orthogonality of the DDF

states both in the periodic and anti-periodic sectors. Here this orthogonality will be proved.

We shall, for definiteness, consider the periodic sector, generalisation to the anti-periodic

sector being obvious.

We first notice, with the relation (3.20) in mind, that an arbitrary inner product

between that states in (3.15) and (3.16) can be given the following form,

I = 〈J |
∏

i

Sbi
m̄i

∏

j

A
Jj

n̄j

∏

k

AIk
−nk

∏

l

Sal
−ml

|I〉 , (3.25)

if we allow the zero modes for the fermionic oscillators. To reduce clutter, we have sup-

pressed the momentum specification. The indices i, j, k, l run up to arbitrary positive

integers. The bosonic mode numbers n̄j, nk are positive definite while the fermionic ones

m̄j ,ml are positive, including zero. Next we notice that, due to the θ-charge conservation,

the matrix element of any operator of nonzero θ-charge between two vector ground states

is zero. The only non-trivial operators that can have non-zero matrix elements are rotation

generators which have zero θ-charge. Therefore after expanding all the operators in (3.25)
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in powers of θ the only terms that give non-zero results are those for which sum of the

θ-charges of all the operators in a given product is zero. Here is a special example of a

term that is potentially non-zero:

Ispecial = 〈J |
∏

i

S
(ōi)bi

m̄i

∏

j

A
(0)Jj

n̄j

∏

k

A
(0)Ik

−nk

∏

l

S
(ol)al

−ml
|I〉 ,

ōi, ol = ±1 ,

(

∑

i

ōi +
∑

l

ol

)

= 0 , (3.26)

where the extra index in the parenthesis refers to the θ-charge of the term in the θ-expansion

of the relevant operator. We shall see later in what sense this inner product is special. Let

us first try to compute the inner product using the following commutation relations,
[

A(0)I
m (1/q+

0 ), A(0)J
n (1/q+

0 )
]

= mδIJδm,−n ,
[

A(0)I
m (1/q+

0 ), S(−1)a
n (1/q+

0 )
]

= 0 ,
{

S(−1)a
m (1/q+

0 ), S(−1)b
n (1/q+

0 )
}

= 0 ,
{

S(−1)a
m (1/q+

0 ), S(1)b
n (1/q+

0 )
}

=
1

2
δabδm,−n . (3.27)

The commutation relations involving S(−1)’s (to simplify notation we are suppressing the

indices that are not relevant for our discussion) guarantee that in order for the inner

product to be non-zero we should have the following condition satisfied: let n+ and n− be

the number of positively modded fermionic operators with θ-charge +1 and −1 respectively,

then the number of negatively modded fermionic operators with θ-charge +1 and −1 are

given by n− and n+ respectively. One can then move S(−1)’s towards right or left, as

appropriate, to absorb all the S(1)’s. This way one gets rid of all the fermionic operators.

Then the inner product of the bosonic operators can easily be found by using the first

equation in (3.27). Therefore the final result should be,

Ispecial ∝ δ{Jj ,n̄j},{Ik,n̄k}δ{bi,m̄i},{al,ml}δIJ . (3.28)

Certainly there is an obvious delta function involving momenta, which is suppressed in the

above expression. One does not have other symmetry terms originating from interchange

of the operators as the basis states have been defined with an ordering.

We shall now argue that the only terms that are non-zero in I are of the type Ispecial.

Ispecial is the kind of terms in I that come with the minimum number of S(−1)’s. All the

other terms with zero total θ-charge can be obtained by replacing some of the operators

(both bosonic and fermionic) in Ispecial by the corresponding ones with higher θ-charge and

balancing the total θ-charge by adding suitable number of extra S(−1)’s. More we bring in

higher θ-charge operators, bigger we make the mismatch between the numbers of S(−1)’s

and S(1)’s. If the higher θ-charge operators commute with S(−1)’s then the result will be

zero. But generically this will not be the case. The final result can still be zero if the

collection of all the higher θ-charge operators are unable to absorb all the extra S(−1)’s

through commutators. The necessary and sufficient condition for this to happen is the fact
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that the term in either of the DDF vertex operators BI(k−, z) and Fa
L(k−, z) at the n-th

order in θ-expansion does not have a term with charge (n, 0) for n > 1. According to our

notation, a term with charge (p, q) has left (θL) and right (θR) moving θ-charges p and q

respectively. The above requirement is satisfied due to a theorem that we call absence of

maximal left moving θ-charges which is stated and proved in appendix C. This establishes

the fact that the inner product in eq. (3.25) is proportional to the right hand side of (3.28)

and therefore the DDF basis states are orthogonal.

4. Physical components of boundary states for instantonic D-branes

A particular approach of studying open string boundary conditions and D-brane boundary

states have been considered in [11] where one writes down the boundary conditions and

boundary states in the free CFT by relaxing the pure spinor constraint. These boundary

conditions and boundary states are easy to construct and are in one-to-one correspondence

with the actual boundary conditions and boundary states of the constrained CFT. The

boundary conditions in the free CFT produce the correct reflection property between the

holomorphic and anti-holomorphic parts of any bulk insertion that is allowed in the pure

spinor CFT. With suitable choice of vertex operators the boundary states are expected to

produce correct results for all the closed string one-point functions of the actual theory.

But these boundary states, as one might already expect, are not suitable for computation

of the cylinder diagram. The reason is two-fold which we list below:

1. Having been constructed in a bigger Hilbert space, these boundary states contain

degrees of freedom which do not belong to the actual theory. Let us call them

unphysical degrees of freedom.

2. The boundary states have been constructed in the gauge unfixed theory.

The first problem could be solved simply by throwing away all the unphysical degrees of

freedom. A covariant pure spinor boundary state at ghost number (1, 1) can be defined in

the following way:

|B〉PS =
∑

iPS

ϕ
(B)
iPS

|iPS〉 , (4.1)

where {|iPS〉} is a complete basis of ghost number (1, 1) states in pure spinor formalism

(with the constraint imposed). The one point functions ϕ
(B)
iPS

can be computed following

the prescription of [11] using the boundary state |B〉free constructed in the free CFT. One

might think that the projected boundary state |B〉PS could be evolved by world-sheet

time evolution to compute the cylinder diagram. As argued and demonstrated explicitly

through the long range force computation in [11], this is not true as the boundary sate

still includes gauge degrees of freedom. In NSR formalism these gauge degrees of freedom

are removed by a simple gauge fixation (Siegel gauge). It is in this particular gauge the

closed string propagator in Schwinger parametrisation has an interpretation of world-sheet

time evolution. It is not clear how to achieve this in pure spinor formalism. In summary,
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the problem is to find a suitable further projection of the boundary state |B〉PS to remove

the gauge degrees of freedom so that the projected boundary state can be evolved by the

world-sheet time evolution. Here we shall achieve this by projecting the boundary states

onto the physical Hilbert space HDDF constructed in the closed string sector. Since the

DDF construction gives explicit expression for the LCGS variables in terms of the pure

spinor variables, one would expect that the projected boundary states would take the

same form of the LCGS boundary states in terms of the DDF operators. We shall see

that this expectation is actually correct. Before going into the further details, we should

mention that because of the special kinematical condition that q+
0 is fixed and non-zero

for all the DDF states, these are suitable to extract the physical components of only the

instantonic boundary states which impose Dirichlet boundary conditions along both the

light-cone directions. For a lorentzian D-brane having Neumann boundary condition along

both the light-cone directions we need states which have both q±0 to be zero. For D-

branes which have Neumann boundary condition along one of the light-cone directions and

Dirichlet along the other q+
0 needs to vary over the allowed states. We have discussed

in appendix (D) the boundary conditions for the instantonic D-branes in the free CFT,

following the same approach of [11].

The DDF states in the closed string theory can be constructed simply by constructing

the DDF operators AI
n(1/q+

0 ), Sa
n(1/q+

0 ) and ÃI
n(1/q+

0 ), S̃a
n(1/q+

0 ), as in the previous sec-

tion, in the left and right moving sectors separately. Then we define, as before, the DDF

states which may be denoted as,
( |{Ii, ni}, {aj ,mj}, I, q〉L
|{Ii, ni}, {aj ,mj}, ȧ, q〉L

)

⊗
( |{Ĩi, ñi}, {ãj , m̃j}, Ĩ , q〉R
|{Ĩi, ñi}, {ãj , m̃j}, ˜̇a, q〉R

)

, (4.2)

with N = Ñ , which comes, as usual, from the L0 = L̃0 constraint. The above states

correspond to all the physical degrees of freedom and are on-shell with mass given by: M2 =

2N . Given the ghost number (1, 1) covariant boundary state |Inst〉PS of an instantonic D-

brane in pure spinor formalism, its physical component is given by,

|Inst, q+〉phys =
∑

i

|i, q〉〈i, q|Inst〉PS =
∑

i

ϕ
(Inst)
i |i, q〉 , (4.3)

where the states |i, q〉 are the ghost number (1, 1) orthonormal basis states in HDDF given

in (4.2) with a fixed q+ and the states 〈i, q+| are the corresponding conjugate states with

ghost number (2, 2). The sum over i in the above equation includes integration over spatial

components of momentum as well as the discrete levels. The coefficients ϕ
(Inst)
i can be

computed using the boundary states |Inst〉free constructed in the free theory following the

prescription of [11]. Therefore given |Inst〉free, |Inst, q+〉phys can be constructed unambigu-

ously. But to get a closed form expression for |Inst, q+〉phys we shall proceed in a less direct

way. SO(8) covariant boundary states for the BPS and non-BPS instantonic D-branes in

LCGS formalism are already known [12, 14, 15]. The pure spinor boundary state in (4.3)

is expected to take the same form as the corresponding one in LCGS formalism. We shall

argue that this is in fact true by deriving the gluing conditions satisfied by the DDF oper-

ators on |Inst, q+〉phys and showing that they are same as the corresponding ones in LCGS

formalism.
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The DDF gluing conditions will be obtained by using boundary conditions written in

open string channel and then converting that to the closed string channel as needed. Using

the mode expansion of X+ one can argue that in the closed string channel at τ = 0,
[

eink0X+
L (eiσ) − e−ink0X+

R (e−iσ)
]

|Inst, q+〉phys = 0 , (4.4)

which can be used, in addition to the boundary condition in eq. (D.3), to argue that for

an instantonic BPS Dp-brane one has,
[

BI(−nk0, e
iσ) − e−2iσ(MV )IJ B̃J(nk0, e

−iσ)
]

[

Fa
L(−nk0, e

iσ) + iηe−2iσMS
abF̃b

L(nk0, e
−iσ)

]







|Instp, η, q+〉phys = 0 , (4.5)

where MV is the 8-dimensional block of MV (as defined below eq. (D.1)) corresponding

to the light-cone transverse directions. We define matrices MS and MC in the following

way,

MS = M̄S =

(MS
ab 0

0 MC
ȧḃ

)

, (4.6)

where the matrices MS and M̄S are defined in eqs(D.4). Upon recalling the defini-

tions (3.10), eqs. (4.5) readily give the following gluing conditions for the DDF operators.

[

AI
n(1/q+) − (MV )IJ ÃJ

−n(1/q+)
]

[

Sa
n(1/q+) + iηMS

abS̃
b
−n(1/q+)

]







|Instp, η, q+〉phys = 0 , ∀n ∈ Z . (4.7)

The bosonic part of the gluing conditions satisfied by a non-BPS D-instanton takes

the same form as in (4.7). To obtain the fermionic part we proceed as follows: Writing the

integrated gluino vertex operator in the following form: Fα(k, z) = Gα(z)eik.X(z), we first

use covariance to argue that Gα(z) satisfies the same boundary condition as pα(z) as given

by the last equation in (2.1). The SO(8) decomposition of this boundary condition gives

on UHP,

Ga
L(z)Gb

L(w) = −Mab
cd G̃c

L(z̄)G̃d
L(w̄) , at z = z̄ , w = w̄ , (4.8)

where the coupling matrix Mab
cd is given by,

Mab
cd =

1

8
δabδcd +

1

16

∑

I,J

λIλJσIJ
ab σIJ

cd +
1

192

∑

{IJKL}∈K(4)

λIλJλKλLσIJKL
ab σIJKL

cd , (4.9)

where we have used (MV )IJ = λIδ
IJ for notational simplicity and K(4) is defined, analo-

gously to K(5) in eqs. (2.3), for sets of four integers instead of five. Using (4.8) and (4.4)

one can argue that the following condition is satisfied for a non-BPS instantonic Dp-brane

in the closed string channel at τ = 0,
[

Fa
L(−mk0, e

iσ)Fb
L(−nk0, e

iσ′

)+e−2i(σ+σ′)Mab
cdF̃c

L(mk0, e
iσ)Fd

L(nk0, e
iσ′

)
]

|Instp, q
+〉phys=0,

(4.10)

– 16 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
5

which implies the following gluing condition for the fermionic DDF operators,
[

Sa
m(1/q+)Sb

n(1/q+) + Mab
cdS̃

c
−m(1/q+)S̃d

−n(1/q+)
]

|Instp, q
+〉phys = 0 , ∀m,n ∈ Z .

(4.11)

Eqs. (4.7) and (4.11) are precisely the same gluing conditions satisfied by the BPS and

non-BPS instantonic D-brane boundary states in LCGS formalism as discussed in [12]

and [15] respectively. The physical components of the D-instanton boundary states in

pure spinor formalism can therefore be found simply by replacing the LCGS oscillators

by the corresponding DDF operators constructed here in the expressions for the boundary

states found in [12] and [15] (with the obvious change of notations for the SO(8) vector

and spinor matrices). Notice that the physical components of the D-instanton boundary

states constructed this way have very complicated expressions in terms of the pure spinor

variables as the DDF operators have θ-expansions. But for computations restricted to

HDDF these states behave as simply as the boundary states in LCGS formalism.

5. The cylinder diagram

Having removed all the unphysical degrees of freedom which one should not let propagate

in the cylinder diagram we can now evolve the projected boundary state |Inst, q+〉phys by

the closed string propagator 1/(L0 + L̃0).

C(X+,X−) ∝
∫

dq+dq−〈Inst,−q−,−q+|e
iq+X−+iq−X+

L0 + L̃0

|Inst′, q−, q+〉 , (5.1)

where X± are the separation between the two branes along the light-cone directions. There

is also a separation in the transverse direction which we have suppressed. The states have

been allowed arbitrary q− as required by the Fourier transform of the position eigen states.

But we shall see that the propagating states will have the on-shell value. Writing (L0 + L̃0)

in the following form,

L0 + L̃0 = −2p+(p− − H) , (5.2)

where,

H =
1

2p+
(~p2 + N + Ñ) , (5.3)

with N = N (X) + N (p,θ) + N (w,λ) (similarly for the right moving sector) and following the

same steps as in [20] one arrives at the following expression for the cylinder diagram,

C(X+,X−) ∝
∫ ∞

0

dτ

τ
e

iX+X−

2πτ 〈Inst,−q+|eiπτ(~p2+N+Ñ)|Inst′, q+〉 , (5.4)

where τ = X+

2πq+ can be easily identified with the modulus of the lorentzian cylinder. Going

to the euclidean world-sheet by the Wick rotation: τ → it, one arrives at,

C(X+,X−) ∝
∫ ∞

0

dt

t
e

X+X−

2πt 〈Inst,−q+|e−πt(~p2+N+Ñ)|Inst′, q+〉 . (5.5)

Computation of this quantity is well-understood and the open-closed duality is manifest in

the result.
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6. Conclusion

The open string boundary conditions and boundary states for both BPS and non-BPS

D-branes in pure spinor formalism were written down in [11] in the unconstrained CFT

by relaxing the pure spinor constraint. It was argued that these boundary conditions and

boundary states are suitable to compute boundary conformal field theory correlators and

closed string one point functions respectively. But one can not evolve these boundary states

according to the world-sheet time evolution to compute the cylinder diagram with manifest

open-closed duality. This is because one does not know how to remove the gauge degrees

of freedom propagating along the cylinder. The cylinder diagram can still be computed

if one is able to project these boundary states onto a physical Hilbert space free of such

degrees of freedom.

In this paper we have explicitly constructed such a physical Hilbert space in pure

spinor formalism. By exploiting the manifest supersymmetry of the formalism, this Hilbert

space has been constructed by performing a supesymmetric version of the usual DDF

construction [16]. This gives an explicit realisation of all the states obtained in LCGS

formalism. The validity of our construction has been justified by proving that the DDF

operators constructed here have the same commutation relations as those of the LCGS

oscillators in the physical Hilbert space. Outside this Hilbert space the commutators have

non-trivial θ-expansions.

The DDF construction for open strings on BPS D-branes (closed strings) implicitly

defines the ghost number one (two) unintegrated vertex operators for all the string states

in the BRST cohomology with special kinematical conditions.7 All these vertex operators

take a form where the ghost number of the operator is contributed only by the zero modes

of the pure spinor ghosts. Using the boundary conditions in [11] it is argued that there

are two sectors of open strings on a non-BPS D-brane: periodic (R) and anti-periodic

(NS). The analysis for the R sector goes in the same way as that corresponding to the

BPS D-branes. Although the DDF construction for the NS sector is well defined, the

unintegrated vertex operators, that are needed for the scattering amplitude computations,

can not be derived from this construction unless the vertex operator for the unique ground

state, which represents the open string tachyon, is understood.8 Understanding of how

to explicitly construct this ground state is an interesting and important open question.

This is an example of a more generic question of how to construct the ground states for

open strings stretching between branes at angles which will allow more general boundary

conditions.

Going back to the discussion of boundary states, we derive the gluing conditions for

the DDF operators satisfied on the boundary states for both the BPS and non-BPS in-

stantonic D-branes. We show that these conditions are exactly the same as those satisfied

by the oscillators in LCGS formalism [12, 15]. Therefore the projected boundary states in

pure spinor formalism can be obtained simply by replacing the LCGS oscillators by the

DDF operators constructed here in the expressions for the boundary states written down

7See [22] for computation of the covariant vertex operators at the first massive level.
8I thank N. Berkovits for discussion on this point.
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in [12, 15]. This construction offers an explicit embedding of all the computations that can

possibly be done in LCGS formalism into pure spinor formalism, a particular example being

the cylinder diagram with manifest open-closed duality. However, computing the cylinder

diagram using a covariant boundary state still remains an open question. It is important

to identify the relevant covariant basis for which the techniques of [23] may prove useful.
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A. Notation and convention

We follow the same notation and convention for the 32 and 16 dimensional gamma ma-

trices as given in [11]. Therefore all the gamma matrix properties and Fiertz identities

summarised in the relevant appendix of [11] still hold. Here we shall consider an explicit

SO(8) decomposition. We define the light-cone components A± of a 10-dimensional vector

Aµ in the following way,

A± =
1√
2
(A0 ± A9) . (A.1)

A 16-dimensional chiral spinor ξ of either chirality is decomposed into the left and right

moving SO(8) spinors in the following way,

ξ = (ξa
L, ξȧ

R) . (A.2)

The 16-dimensional gamma matrices of [11] are given by,

γ0 = −γ̄0 = II16 , γI = γ̄I =

(

0 σI
aȧ

σ̄I
ȧa 0

)

, γ9 = γ̄9 = γ1γ2 · · · γ8 =

(

II8 0

0 −II8

)

,

(A.3)

where σ̄ = (σ)T = σ = σ∗.

We shall now collect some of the expressions that are relevant for open strings and are

directly needed for the computation of the present paper. We work in the α′ = 2 unit,

such that,

Xµ(z)Xν(w) ∼ −ηµν log |z − w| . (A.4)

The supersymmetry charge is given by,

Qα =

∮

dz

2πi
qα(z) ,

qα = pα +
1

2
(γ̄µθ)α ∂Xµ +

1

24
(γ̄µθ)α (θγ̄µ∂θ) . (A.5)
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Using (A.4) and,

pα(z)θβ(w) ∼ δ β
α

z − w
, (A.6)

one can derive the following supersymmetry algebra,

{Qα, Qβ} = γ̄µ
αβ

∮

dz

2πi
∂Xµ(z) , (A.7)

which takes the following form in the SO(8) notation,

{

Qa
L, Qb

L

}

=
√

2δab

∮

dz

2πi
∂X+(z) ,

{

Qa
L, Qȧ

R

}

= σI
aȧ

∮

dz

2πi
∂XI(z) ,

{

Qȧ
R, Qḃ

R

}

=
√

2δȧḃ

∮

dz

2πi
∂X−(z) . (A.8)

The BRST charge is given by,

QB =

∮

dz

2πi
qB(z) ,

qB = λα(z)dα(z) , dα = pα − 1

2
(γ̄µθ)α∂Xµ − 1

8
(γ̄µθ)α(θγ̄µ∂θ) . (A.9)

The fermionic matter and the pure spinor ghost contributions to the Lorentz currents

Mµν(z) and Nµν(z) respectively are given by,

Mµν = −1

2
(pγµνθ) , Nµν =

1

2
(wγµνλ) . (A.10)

They form SO(9, 1) current algebra at levels 4 and −3 respectively and satisfy the following

OPE’s,

Mµν(z)θα(w) ∼ 1

2(z − w)
(γµνθ(w))α , Mµν(z)pα(w) ∼ 1

2(z − w)
(γ̄µνp(w))α ,

Nµν(z)λα(w) ∼ 1

2(z − w)
(γµνλ(w))α . (A.11)

Finally we define the Virasoro zero mode in the following way:

L0 =
α2

0

2
+ N (X) + N (p,θ) + N (w,λ) + a , (A.12)

where N (X), N (p,θ) and N (w,λ) are the level operators for the bosonic matter, fermionic

matter and bosonic ghost sectors respectively. N (X) and N (p,θ) are defined in the usual

way. For the ghost sector this may be defined through the following commutation relations:

[N (w,λ), λα
r ] = −rλα

r , [N (w,λ), Nµν
n ] = −nNµν

n , [N (w,λ), Jn] = −nJn , (A.13)

where n is an integer and r is an integer or half integer depending on whether we are

considering the periodic or anti-periodic sector respectively. Nµν
n and Jn are the modes of
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the currents Nµν(z) and J(z) ∝ wα(z)λα(z) respectively. The normal ordering constant a

in eq. (A.12) is given by,

a =

{

0 , periodic sector,

−1
2 , anti-periodic sector .

(A.14)

The value for the periodic sector is easily understood from the fact that we have a Bose-

Fermi degeneracy in this sector. For the anti-periodic sector we have fixed this by requiring

a physical condition, namely the open-closed duality. In this paper we have constructed the

physical Hilbert space of LCGS formalism explicitly in terms of the pure spinor variables.

The projected boundary states onto this Hilbert space are suitable for the computation

of the cylinder diagram with manifest open-closed duality. There is no ambiguity in the

computation on the closed string side. Hence it gives a unique answer which has to be

consistent with the open string channel computation. This fixes the L0 eigenvalue of the

unique ground state in the NS sector.

B. Massless vertex operators and supersymmetry

Physical vertex operators in the unintegrated form are given by certain ghost number one

operators in the BRST cohomology. The super-Poincaré invariant massless vertex operator

is given by: λα(z)Aα(X(z), θ(z)) where the function Aα(x, θ) is the spinor potential for

D=10, N=1 super-Maxwell theory satisfying Dα(γµ1···µ5)αβAβ = 0 for any µ1, . . . µ5 and

Dα = ∂
∂θα + 1

2 γ̄µ
αβθβ∂µ. The gauge invariance is given by: δAα = DαΩ. Using this gauge

invariance the massless vertex operators can be given the following form in momentum

space,

u(k, z) = aµ(k)bµ(k, z) + ξα(k)fα(k, z) , (B.1)

where,

bµ(k, z) =
1

2
(λ(z)γ̄µθ(z)) eik.X(z) + · · · ,

fα(k, z) =
1

3
(λ(z)γ̄µθ(z)) (γ̄µθ(z))α eik.X(z) + · · · , (B.2)

where the dots refer to terms higher order in θ. Notice that the gluon vertex operator

bµ(k, z) is world-sheet fermionic as it contains terms with odd θ-charges only. Gluino

vertex operator fα(k, z), on the other hand, has even θ-charge, hence is bosonic. Equation

of motion and the residual gauge invariance are given by,

k2 = 0 , kµaµ(k) = 0 , kµ (γ̄µξ(k))α = 0 ,

δaµ(k) = Λ(k)kµ , δξα(k) = 0 . (B.3)

The vertex operators in (B.2) are BRST closed when the above equations of motion are

satisfied,

{QB , bµ(k, z)} = 0 , [QB , fα(k, z)] = 0 . (B.4)
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The on-shell supersymmetry transformations are (up to BRST exact terms),

{Qα, bµ(k, z)} = − i

2
kν γ̄

µν β
α fβ(k, z) , [Qα, fβ(k, z)] = −γ̄µ

αβbµ(k, z) . (B.5)

The integrated vertex operators have ghost number zero and satisfy the following relations

with the unintegrated ones,

[QB,Bµ(k, z)] = ∂bµ(k, z) , {QB ,Fα(k, z)} = ∂fα(k, z) . (B.6)

The on shell supersymmetry transformations take the similar form as in eqs. (B.5) and are

given, up to total derivative terms, by,

[Qα,Bµ(k, z)] =
i

2
kν γ̄

µν β
α Fβ(k, z) , {Qα,Fβ(k, z)} = γ̄µ

αβBµ(k, z) . (B.7)

Clearly Bµ(k, z) and Fα(k, z) have θ expansions with only even and odd order terms re-

spectively. To justify our construction of the DDF operators we need explicit expressions

for only up to first order terms.

Bµ(k, z) = (∂Xµ(z) + ikνLνµ(z)) eik.X(z) + · · · ,

Fα(k, z) = pα(z)eik.X(z)

+ (γ̄µθ(z))α

[

1

2
∂Xµ(z) + ikν

(

Nνµ(z) +
1

2
Mνµ(z)

)]

eik.X(z) + · · · , (B.8)

where Lµν = Mµν + Nµν is the fermionic matter and pure spinor ghost contribution to

the SO(9, 1) Lorentz current at level 1. This should be identified with the fermonic matter

contribution to the Lorentz current in NSR formalism. Notice that at zero momentum

θ-expansion of these operators simplify. Using necessary OPE’s it can be argued that with,

Bµ(0, z) = ∂Xµ(z) , Fα(0, z) = qα(z) , (B.9)

one can satisfy both eqs. (B.6) and (B.4) with [21],

bµ(0, z) =
1

2
(λ(z)γ̄µθ(z)) , fα(0, z) =

1

3
(λ(z)γ̄µθ(z)) (γ̄µθ(z))α . (B.10)

This result is crucial to show eqs. (3.19).

We shall now show that the first order term in the θ-expansion of Fα(k, z) is as given

in eq. (B.8). Writing,

Bµ(k, z) = B(0)
µ (k, z) + B(2)

µ (k, z) + · · · ,

Fα(k, z) = F (−1)
α (k, z) + F (1)

α (k, z) + · · · ,

qα(z) = q(−1)
α (z) + q(1)

α (z) + q(3)
α (z) , (B.11)

with the integers appearing in the superscripts of various term referring to the θ-charge

and using the supersymmetry transformations (B.7) one concludes (up to possible total

derivative terms),

Resz→w

[

q(−1)
α (z)ξβ(k)F (1)

β (k,w) + q(1)
α (z)ξβ(k)F (−1)

β (k,w)
]

= − (γ̄µξ(k))α B(0)
µ (k,w) ,

(B.12)
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where ξ(k) satisfies the on-shell condition in (B.3). Reading out q(1)(z) and F (−1)
α (k, z)

from eqs. (A.5) and (B.8) one shows,

Resz→wq(1)
α (z)ξβ(k)F (−1)

β (k,w) = −1

2
(γ̄µξ(k))α ∂Xµ(w)eik.X(w)

+
i

2
kµξβ(k) (γ̄µθ(w))α pβ(w)eik.X(w) . (B.13)

Using the on-shell condition: kµγ̄µ
αβξβ(k) = 0 and the gamma matrix property: ηµν γ̄µ

(αβ
γ̄ν

γ)δ

= 0, one can do a manipulation to write,

kµξβ (γ̄µθ)α pβ = kµ (γ̄νξ)α Mνµ +
1

2
kµ (θγ̄νξ) (γ̄νµp)α . (B.14)

Using this and reading out the expression for B(0)
µ (k, z) from eqs. (B.8) one can write,

Resz→wpα(z)ξβ(k)G(1)
β (k,w) = −1

2
(γ̄µξ(k))α ∂Xµ(w) − i (γ̄µξ(k))α kνNνµ(w) (B.15)

− i

2
(γ̄µξ(k)) kνMνµ(w) +

i

4
(θ(w)γ̄µξ(w)) kν (γ̄νµp)α .

where we have written,

F (1)
α (k, z) = G(1)

α (k, z)eik.X(z) . (B.16)

It can be explicitly checked that the expression for G(1)
α (z) as read from eqs. (B.16) and (B.8)

indeed satisfies eq. (B.15). We should also check the consistency of this result with the

BRST property. The following equation,

[Q
(−1)
B , ξα(k)F (1)

α (k, z)] + [Q
(1)
B , ξα(k)F (−1)

α (k, z)] = 0 , (B.17)

which is obtained by expanding the second equation in (B.6) in powers of θ, needs to

be satisfied. Reading out the expressions for q
(−1)
B (z) and q

(1)
B (z) from eq. (A.9) one first

derives,

Resz→wq
(−1)
B (z)F (1)

α (k,w) = (γ̄µλ(w))α

[

1

2
∂Xµ(w) + ikν

(

Nνµ(w) +
1

2
Mνµ(w)

)]

eik.X(w)

− i

4
kν (γ̄µθ(w))α (λ(w)γ̄νµp(w)) eik.X(w) ,

Resz→wq
(1)
B (z)F (−1)

α (k,w) =

[

−1

2
(γ̄µλ(w))α ∂Xµ(w)+ (B.18)

i

2
kµ (γ̄µ∂λ(w))α +

i

2
kµ (λ(w)γ̄µθ(w)) pα(w)

]

eik.X(w) .

Then using the on-shell condition for ξα(k) and the result (B.14) one shows that the

condition (B.17) is indeed satisfied. One may wonder what happens to the Nµν dependent

term in the first equation as there is no other term that can cancel it. This term can be

shown to drop off by using the following identity,

Nµν (γ̄νλ)α = −1

4
(wγµγ̄ν)α (λγ̄νλ) − 1

2
(γ̄µλ)α (wλ) , (B.19)

and the on-shell condition for ξα(k).
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C. The Absence of maximal left-moving θ-charges theorem

Below we state and prove the absence of maximal left-moving θ-charges theorem.

Theorem. The n-th order terms B(n)I(k−, z) and F (n)a
L (k−, z) in the DDF vertex opera-

tors BI(k−, z) and Fa
L(k−, z) respectively do not contain terms with charge (n, 0) for n > 1

and (n + 1,−1) for n > −1.

Proof. We start by proving that O(n)(z) does not have a term with charge (n + 1,−1) for

n > −1, where O(n)(z) stands for either B(n)I(k−, z) or F (n)a
L (k−, z). To do that let us

consider the two commutation relations involving Qa
L in eqs. (3.7) and (3.8) for non-zero

k−. These relations imply,

Resz→w

[

q
(−1,0)
L (z)O(n)(w) +

{

q
(0,1)
L (z) + q

(1,0)
L (z)

}

O(n−2)(w) + q
(1,2)
L (z)O(n−4)(w)

]

= 0 ,

(C.1)

where,

q
(−1,0)
L = pL , q

(0,1)
L =

1

2
∂XIσIθR , q

(1,0)
L =

1√
2
∂X+θL ,

q
(1,2)
L = − 1

12
(θR∂θR)θL +

1

24

{

(θLσI∂θR) + (θRσ̄I∂θL)
}

σIθR . (C.2)

If O(n) contains a term with charge (n + 1,−1) then the first term on the left hand side of

eq. (C.1) will produce a term with charge (n,−1).

Resz→wq
(−1,0)
L (z)O(n)(w) → L(n,−1)(w) , (C.3)

which needs to be cancelled by similar contributions coming from the rest of the terms.

There can not be any contribution coming from the last term. This is because the only

operator of negative left (right)-charge is pL (pR) which has left-charge (right-charge) −1

and dimension 1 and O(n) has dimension 1 for any n. Therefore,

Resz→w

[

q
(0,1)
L (z)O(n−2)(w) + q(1,0)(z)O(n−2)(w)

]

→ −L(n,−1)(w) . (C.4)

In order for the first term to contribute to the right hand side O(n−2) needs to have a term

with charge (n,−2), which is not possible for the same reason described above. Also the

second term can not contribute, because q
(1,0)
L does not have a residue with a dimension

one term with charge (n − 1,−1). Therefore we must have,

L(n,−1)(z) = 0 , (C.5)

which implies O(n) can not have a term with charge (n + 1,−1) for n > −1. The above

argument is invalid for n = −1. This is because the right side of eq. (C.3) is trivial and

the last two terms on the left side of eq. (C.1) do not exist. Therefore O(−1) can have a

term with charge (0,−1) while satisfying eq. (C.1).

Let us now turn to prove the other part of the theorem, namely the term with charge

(n, 0) does not appear in O(n) for n > 1. If O(n) has a term with charge (n, 0) then the

first term in eq. (C.1) will produce a term with charge (n − 1, 0)

Resz→wq
(−1,0)
L (z)O(n)(w) → K(n−1,0)(w) , (C.6)
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which needs to be cancelled by a similar term produced by the last two terms in eq. (C.1).

As argued previously the last term in eq. (C.1) can not produce such a term. This implies,

Resz→w

[

q
(0,1)
L (z)O(n−2)(w) + q

(1,0)
L (z)O(n−2)(w)

]

→ −K(n−1,0)(w) . (C.7)

Let us first consider the first term on the left hand side of (C.7). In order for this term

to contribute to the right hand side O(n−2) should necessarily have a term with charge

(n− 1,−1). Recalling that we are considering n > 1, this requirement can not be satisfied

due to the part of the theorem that has been proved first. We now consider the second

term on the left hand side. From eqs. (C.2) it is easy to argue that in order for the second

term to produce an (n−1, 0) term, it is necessary that O(n−2) have an (n−2, 0) term with

a factor of ∂X−. Below we shall argue that the following statement is true:

The DDF vertices BI(k−, z) and Fa
L(k−, z) do not contain the operator ∂X−(z)

in their θ-expansion. (C.8)

Assuming this result for the time being we conclude that the second term on the left hand

side of (C.7) does not contribute to the right hand side. This implies,

K(n−1,0)(z) = 0 , (C.9)

which implies O(n)(z) does not have a term with charge (n, 0) for n > 1. For n = 0,−1 the

first term in eq. (C.1) gives zero for (0, 0) and (−1, 0) terms coming from O(0) and O(−1)

respectively and the rest of terms are nonexistent in both the cases. Therefore O(0) and

O(−1) can have terms with charges (0, 0) and (−1, 0) respectively while satisfying eq. (C.1).

We now proceed to prove the result (C.8). Let us first consider BI(k−, z). Any term

which will give rise to ∂X−(z) in BI(k−, z) should come from a covariant term of the

following form in Bµ(k, z): ∂Xν(z)Aµν(k, z), where Aµν(k, z) is a dimension zero operator

in the fermionic matter sector, and therefore constructed entirely out of θ’s. The simplest

possibility is kµkν which does not have any θ. For the momentum restriction relevant for

BI(k−, z), this gives rise to ∂X+, not ∂X−. To look for terms with non-zero number of

θ’s we should keep in mind that we must have even number of θ’s in a given term and

that, because the gamma matrices are symmetric, only a third rank tensor (θγ̄µνρθ) (which

will be called θ2 hereafter) can be constructed out of two θ’s. Therefore an eligible term

will be a product of such third rank tensors and momenta. The two vector indices in

Aµν(k, z) can, in general, come from any such factors. It is easy to see that if any of them

comes from momentum then the term either does not contribute to BI(k−, z) at all or

gives rise to ∂X+, not ∂X−. Also the momentum independent terms can be ignored as

we know from eq. (B.9) that at zero momentum there is no ∂X− in BI(k−, z). The other

possibilities include two cases where both the vector indices come from the same θ2 factor

and two different θ2 factors. In the first case we have one vector index from the relevant

θ2 factor which is contracted with another θ2 factor or monemtum. In the second case

each of the two relevant θ2 factors will have two vector indices contracted with other θ2

factors and/or momenta. In order to have a ∂X− in BI(k−, z) one of the vector index
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has to be +. Therefore we have a situation where we need to have a θ2 factor with one

vector index to be + and one or two (depending on the cases described above) other vector

indices to be contracted with other θ2 factors and/or momenta. It is easy get convinced

that a full contraction of these kinds will always involve momentum contraction(s). Since

the only nonzero component of momentum is k− these momentum contractions will always

induce a + index in the original θ2 factor which had a free + index. Since the θ2 factor

is antisymmetric in its indices this must be zero. This establishes that ∂X−(z) does not

appear in BI(k−, z).

Let us now consider Fa
L(k−, z). The covariant term in Fα(k, z) that will potentially

give rise to ∂X− in Fa
L(k−, z) should have the form: ∂XµDµ

α(k, z), where Dµ
α(k, z) is a

dimensionless operator constructed entirely out of θ’s. The possibilities are as follows:

Class I Class II

(γ̄µθ)α E0(k, z) (γ̄ρθ)α Eµρ
1 (k, z)

(γ̄µ
ρ1ρ2θ)α E [ρ1ρ2]

2 (k, z) (γ̄ρ1ρ2ρ3θ)α Eµ[ρ1ρ2ρ3]
3 (k, z)

(γ̄µ
ρ1ρ2ρ3ρ4θ)α E [ρ1ρ2ρ3ρ4]

4 (k, z) (γ̄ρ1ρ2ρ3ρ4ρ5θ)α Eµ[ρ1ρ2ρ3ρ4ρ5]
5 (k, z)

where all the operators denoted by E with various tensor structures are products of θ2

terms and momenta. None of the class I operators appears in Fa
L(k−, z) when the free

vector index is set to +. This is simply because the prefactor linear in θ that appears in

each of these operators is projected to the “wrong” chirality. Although similar projection

gives the “right” chirality for the class II operators, they do not appear because of the

momentum restriction involved in the E operators. Each of the E operators involves a θ2

factor whose one vector index is set to + and one or two other indices are contracted to

other θ2 factors and/or momenta. We have argued before that such terms are zero. This

establishes that ∂X−(z) does not appear in Fa
L(k−, z).

D. The instantonic D-branes

Here we shall discuss the boundary conditions and boundary states for both the BPS and

non-BPS instantonic D-branes in type IIB string theory. Following [11] we shall work in

the free CFT.

In the BPS case, boundary condition for the bosonic matter part of the CFT is , as

usual, given by (on UHP),

∂Xµ(z) = −(MV )µν ∂̄Xν(z̄) , at z = z̄ , (D.1)

where MV is the diagonal reflection matrix with −1 for the Neumann directions and +1 for

the Dirichlet directions. For the fermionic matter and bosonic ghost sectors the boundary

conditions can be obtained by demanding that the scalars and vectors constructed out of

the fields in these sectors are related at the boundary in the following way,

Φ(z) = Φ̃(z̄) , Aµ(z) = −(MV )µνÃν(z̄) . (D.2)
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The result is,

Uα(z) = −iη(MS)αβŨβ(z̄) , Vα(z) = iη(M̄S) β
α Ṽβ(z̄) , at z = z̄ , (D.3)

where,

MS = γI1I2···Ip+1 , M̄S = γ̄I1I2···Ip+1 , (D.4)

with p being odd and I1, I2, . . . Ip+1 being the Neumann directions (all spatial). η = ±1

correspond to brane and anti-brane. Since the matrices MS and M̄S includes only the

spatial directions we have the following properties,

MS(M̄S)T = II16 ,

MSγµ(MS)T = (MV )µνγν , (MS)T γ̄µMS = (MV )µν γ̄
ν ,

M̄S γ̄µ(M̄S)T = (MV )µν γ̄ν , (M̄S)T γµM̄S = (MV )µνγ
ν . (D.5)

All the above equations differ by a sign with respect to the case where the matrices include

the time direction as in [11]. The BRST and supersymmetry currents are related on the

boundary in the following way,

jB(z) = j̃B(z̄) , qα(z) = iη(M̄S) β
α q̃β(z̄) . (D.6)

As a result the BPS boundary state |Instp, η〉BPS is BRST invariant and preserves the

expected combination of the supersymmetry,
(

QB + Q̃B

)

|Instp, η〉BPS = 0 ,
(

Qα + iη(M̄S) β
α Q̃β

)

|Instp, η〉BPS = 0 . (D.7)

As we have seen in [15], unlike the case of BPS D-branes, open string boundary con-

ditions for non-BPS D-branes do not involve the spinor matrices representing reflections

along Neumann directions. Therefore these boundary conditions, once written in terms

of the vector matrix MV , should look the same for both Lorentzian and instantonic D-

branes. Indeed the bosonic matter and combined fermionic matter and bosonic ghost parts

of the non-BPS D-instanton boundary conditions are given by eqs. (D.1), (2.1) respectively

with MV representing reflections along the Neumann directions of the considered non-BPS

D-brane.

The boundary states for both the BPS and non-BPS instantonic D-branes can be

constructed explicitly in terms of the oscillators, as was done in [11], but we do not need

the explicit expression for the purpose of the present paper. All we need is to argue using

the boundary conditions (D.3) and equations (D.5) that any holomorphic spinor with

either upper or lower spinor index will be related to the corresponding anti-holomorphic

one following the same rule as followed in eqs. (D.3).
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